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Abstract. Far a strongly interacting boson system, it has been proposed that the concept 
of off-diagonal long-range ordering (ODLRO) is equivalent to Bose-Einstein condensation 
far a free boson system. Therefore, the existence of ODLRO in the ground state implies 
superfluidity. In this article, we check the validity of this proposition from another point 
of view. We shall rigorously show that, for a hard-core lattice-boson system with a 
short-ranged interaction, ODLRO is suppressed when a charged excitation gap develops 
and; hence; the boson system becomes a Molt-insulator. Finally, by using our theorem, 
we show some interesting properlies o f  the antiferromagnetic Heisenberg model, which 
can be taken as a hard-core lattice-boson system. 

It is well known that, in  three-dimensions, a system of free boson panicles undergoes 
a Bose-Einstein condensation and its ground state is superfluid. This phenomenon 
has been shown in the momentum representation. However, to a strongly interacting 
boson system, this representation may not be suitable any more. The strong correlation 
caused by interaction of particles renders the plane-wave picture poor to describe such 
a system. To remedy this problem, many new concepts and approximate methods have 
been proposed. Some of them can be found in a standard textbook [I] .  In particular, 
in a remarkable article [2], Yang developed a theory of Penrose and Onsager [3,4] 
and proposed off-diagonal long-range order (ODLRO). In contrast to the usual diagonal 
long-range order (DLRO), which represents a solid type ordering, Yang argued that 
the existence of ODLRO in the ground state of a strongly interacting boson system 
indicates superfluidity. Indeed, many boson systems, which are superfluids, do have 
ODLRO. For instance, numerical calculation shows that the ground state of 4He supports 

Naturally, one would not expect that all the strongly interacting boson systems 
have a superfluid ground state. In particular, if the interaction of particles causes a 
finite charged-excitation gap, the system will be a Mott-insulator, let alone a superfluid. 
In a very recent paper [5], Lee and Shanker showed that, for a two-dimensional 
hard-core lattice-boson system with a short-range interaction, a non-vanishing charged- 
excitation gap implies the existence of charge density wave commensurating with the 
lattice, i.e. diagonal long-range ordering, in the ground state. In other words, the boson 
system iooks iike a ‘soiid’. ink picture is consisteni with the definition of a Mott- 
insulator since the ‘charged lattice’ can be easily pinned down by an impurity and the 
system becomes insulating. Certainly, the ground state of this system must not be 
superfluid. Then, by Yang’s argument, one would expect that ODLRO in the ground 
state is suppressed. Therefore, a charged-excitation gap and ODLRD cannot coexist. In 
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this article, for hard-core lattice-boson models, we give a direct and rigorous proof to 
the above conclusion and, hence, confirm Yang's argument. Then, by using our theorem, 
we show some interesting properties of the antiferromagnetic Heisenberg model, which 
can be taken as a hard-core lattice-boson systsm. 

We first introduce some useful notation and terminologies. 
Take a finite d-dimensional lattice A with N,, sites. For definiteness, we consider 

a simple cubic lattice. A hard-core lattice-boson system is defined by a Hamiltonian 

(1) 

where t > O  is a parameter and P is a projection operator which annihilates the 
multiple-occupation configurations. (ij) denotes a pair of nearest-neighhour sites. b+ ( b )  
is the boson creation (annihilation) operator and V ( b + b )  represents a short-range 
interaction. We would like to emphasize that the sign of f does not matter very much. 
With respect to the Hamiltonian (l), a simple cubic lattice is bipartite. A proper 
canonical transformation can change the sign of f. 

It  is well known [5] that the Hamiltonian (1) is equivalent to a localized spin-$ 
Hamiltonian 

H = f P  2 (b:bj+ b;b,)P+ V ( b + b )  
(S) 

H = f  1 (S ;+S j_+Sj+S ,_ )+V(S , )  (2) 
(S) 

where S,=S,+iS, and S- is its Hermitian conjugate. Notice that the projection 
operator P is dropped in (2). Now, an occupied (unoccupied) site is represented by 
an up-spin (down-spin) and the number operator b+b is replaced by (l+uz)/2.  For 
such a Hamiltonian, the total number of particles, N (equivalently, the number 
up-spins, Nt)  is a conserved quantity. Let E o ( N )  be the energy of the ground state of 
this Hamiltonian in the sector of 

(3) 

A charged-excitation gap appears at  filling no = No/N, ,  if there is a constant e > 0, 
which is independent of NA: such that 

{ E ( N o +  1) - E ( N o ) }  - { E (  No) - E (  No- l)} 2 e > 0. (4) 

In this case, adding a particle to the system costs more energy than removing one. 
Therefore, the system is insulating. 

Next, let us reall the definition of ODLRO. Following Yang [Z], for a ground state 
Y o  of the Hamiltonian, its reduced two-particle matrix p 2  is defined by 

( ~ J l i j  E (YoI(Pb:P)(PbjP)IYo) = WoISk+sj-IYo) ( 5 )  

where k and j are two sites 0f.A. By this definition, it is easy to see that p2 is an 
N,,x N,, semipositive definite matrix. Let A, be its largest eigenvalue. If there is a 
positive constant c > 0 independent of N,, satisfying 

A,>cN,,  (6j 

then one can show that 
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i.e. Yo has ODLRO. On the other hand, it has been shown [6] that, when there is no 
external field, all the eigenvalues of p2 have the following form 

where q is a reciprocal vector of A. By introducing 

i s =- c Sj- exp(-iq- j )  
'I- ~ ] E A  

we can write Aq in a simpler form 

Aq =(~oISq+Sq-IYo). 

Therefore, 'Yo has ODLRO if and only if there is a reciprocal vector qo satisfying 

A~=(YOIS~~+S~~-I '€ 'O)~  CNA. (11) 

It is not difficult to see that ODLRO is the most natural extension of the concept of 
Bose-Einstein condensation to a strongly interacting boson system. Without interaction, 
Sq+ is simply replaced by 

: 
b:=- b;exp(-iq.j). mi.'+ 

The equation for Bose-Einstein condensation in the ground state Y o  

A O = ( Y O ~ b ~ ~ , b , ~ , ~ Y O ) =  N =  nN, (13) 

simply tells us that Aq=o is the larget eigenvalue of p2 and it is a quantity of O(N).  
With these definitions, we now state our theorem in a precise form. 

Theorem. Suppose that a hard-core lattice-boson system has a charged-excitation gap 
at filling no= NOIN,. Then, for any reciprocal vector q, Acr can be, at most, O(1) in 
the thermodynamic limit. Therefore, ODLRO is suppressed at no. 

Prooj: Our prooi is based on the ioiiowing identity. 

WoI[B+, [ H ,  BIlI'J'o)=E ( E  - E o ) { I W o I W n ) I ' +  I(YoIB+IYn)12} (14) 

where B is an operator and E +  is its Hermitian conjugate. {Yn} is a complete set of 
eigenvectors of the Hamiltonian H and {En}  are the corresponding eigenvalues. This 
identity can be easily checked by expanding the commutator and inserting the complete 
set {YJ between operators. 

We now let B = Sq_ and Yo be the ground state of H in the Nt = N. Notice that, 
only for Yn in the sector of N,  = N + 1, the matrix element ( Y 0 ~ S - ~ Y n )  is possibly 
non-zero. Similarly, if (YolSg+IYn) is non-zero, then 'Pa must be in the sector of 
Nt = N-  1. Therefore, identity (14) is now reduced to 

(F0l[Sq*, [E, Sq-jjlF0) 

=X' ( & ( N - l ) -  Eo(N))I(YoI&+F"U)12 

+ X " ( E m ( N + l ) - ~ ~ ( ~ ) ) l ( Y o l S q - l Y " ) ~ .  
m 



In the last step, we have used the definition of the charged-excitation gap. Obviously, 
each partial sum can now be replaced by the sum over the complete set {Yn}. Therefore, 

(T&Sq+, [ H ,  Sq-jj!Te) 

2 e 1 I(Y,lS,+lYu.)12+[Eo(N+ 1 )  - Eo(N)I 

x 1 ~l(YolS~- lY"~ lz  - l(Yolsq+lY")12} 

= e 1  ~ ~ Y o ~ S , + ~ Y . ) ~ + ~ ~ o ~ N + l ~ - ~ o ~ N ~ l ~ ~ o ~ ~ ~ q - ,  Sq+ll*o). (18) 

Notice that the difference E,( N + 1)  - Eo( N) is a quantity of O( 1 )  in the thermodynamic 
limit. Therefore, the second term on the right-hand side of (18) can be, at most, of O(1). 

Next, we estimate the averaged commutator (Yol[Sq+, [ H ,  Sq-lll'€'o). 
We rewrite the Hamiltonian as 

If= f 1 (S,+S,_+S,+S,_) + V ( S , ) = T + V .  (21) I ( U )  I 
Fer T, direct c&"!ginn yi.& 

(Y0l[Sq+, [T ,  Sq-lll~o) 
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where qm is the component of q in the e,,, direction and d is the dimension of the 
lattice. Since T and 

are sums of nearest-neighbour-paired operators, one would expect that the following 
inequalkies hold 

oG(Yul -Tpo)S  aztNn O S  (Yol-LIYu)S PN,  (24) 

where a and P are positive constants independent of N,, and z = 2d is the number of 
the nearest-neighbours of each lattice site. These upper bounds can be rigorously shown 
by using Gersbgorin's theorem. First, we define an order among the lattice sites by 
alphabetical order and then introduce a basis, which spans the Hilbert subspace without 
multiple occupation by 

( 2 5 )  

In this definition, IF) denotes the spin configuration with all the spins downwards. a 
is a choice of ( j , ,  j 2 , .  . . , jN), which are the positions of the N up-spins. In terms of 
this basis, we write T and L in matrices. The matrix Lis diagonal. Therefore, its non-zero 
eiements are its eigenvaiues. A iittie caicuiation yieids the second inequaiity of (24). 
For T, we observe that all of its diagonal elements are zero and its non-vanishing 
elements are -fs. Furthermore, in each row of matrix T, there are at most zN non-zero 
elements. Therefore, the upper bound for -T is a direct corollary of the following 
lemma due to Gershgorin. 

Lemma (Gershgorin's iheoremj. Lei A be an &i x M mairix. Tnen, any eigenvaiue A 
of A satisfies the following inequality 

mm = q,*sjz+. . . S j N + p ) .  

One can find a proof of Gershgorin's theorem and its application to Nagaoka theorem 
in [7] and [SI. 

Substituting (24) into (23), we find that 

WuI[Sq+, [ -T,  S,-Ill~o)=O(l) (27) 

for any q. 
For V ( S x ) ,  if it is short ranged with a finite maximum interaction intensity, Vm,,,, 

then the above argument also applies. Since V(S,) is a surh of products of (&), 
(Y,l[S,,, [V(S,), Sq_]]~Yo)doesnotcontainanysingularterm.Assumethattheeffective 
range of V(S,) is R,. By Gershgorin's theorem, we can easily show that 

[(Yo1[Sq+, [ V(S,), S-11~~~)~ YR," Vmax = O(1) ' (28) 

where y is a positive constant independeni of iv',,. in summaryy, 

(YUl[%+, [M Sq-lllYo) 
=(Y,l[S,+, [ T ,  S,-IllYo)+(Yol[S,+, [V(S,),S,-III~u) 
= O(1). 
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Combining (18), (20) and (29), we finally obtain 

0 0 )  3 e ( ~ o l ~ q + ~ q - l ~ o ) .  (30) 
It holds for any reciprocal momentum q. If the charged-excitation gap e does not 
vanish, then Aq = (Yo~Sq+Sq-~Yo) can be, at most, O(1) for arbitrary q. Therefore, by 
definition, Yo does not support ODLRO. 

Our proof is accomplished. U 

As an application of our theorem,let us consider the following Hamiltonian 

H = f z  (S,+S,-+S,+S,-)+UZ s,*s,* (31) 

where U>O is a parameter. In particular, when f =2U, the Hamiltonian is the 
wellknown spin-f antiferromagnetic Heisenberg model. It has been shown [9-111 that, 
in three dimensions, the non-degenerate ground state of the Heisenberg model has the 
total spin number S = 0 and supports an antiferromagnetic long-range order. Using 
the notation of [ll], this ordering can be explicitly expressed as 

gQ = ( ~ O ~ ~ & ~ Q Z ~ ~ O ) ~  SNA (32) 
where Q = ( T, T, T )  and S > 0 is a constant independent of N ,  . In other words, the 
hard-core lattice-boson system represented by the Heisenberg Hamiltonian has DLRO 

at filling no=$ .  In the following, we shall show that it also has ODLRO at the same 
filling. Then, by our theorem, the system has a vanishing charged-excitation gap and, 
hence, cannot be an insulator. On the other hand, when U >> t, the Hamiltonian reduces 
to an Ising model, whose ground state is the Nee1 state and has a charged-excitation 
gap e - 2 U. Therefore, DLRO still exists but ODLRO is suppressed. The system is 
insulating. In summary, we find that there exist U,, < U,, such that, when U c U,, , 
the system is superfluid and when U > U,,, it is insulating. So far, we cannot determine 
whether U,, = U<*. 

Now, we show that the Heisenberg Hamiltonian has ODLRO at filling no=$.  First, 
we notice that, for a pair of lattice points k and j ,  

(i) ( V )  

(YOIS~%*lYO) = (YOISk"%"lYO) = ~Yalskz~zlYo). (33) 
Intuitively, that is due to the fact that the Heisenberg Hamiltonian is isotropic in spin 
space and, hence, one cannot single out a special direction. Formally, this identity can 
be rigorously proven by noticing that the Hamiltonian commutes with the following 
spin operators: 

Sf = z $6 z = x, Y. 2. (34) 
I S A  

Therefore, H is invariant under the unitary transformations 

and any subspace spanned by the eigenvectors of H with the same eigenvalue E is 
also invariant under Uf. In particular, since the ground state Yo in S = 0 sector is 
non-degenerate, it must satisfy 

UflYo) = exp ( i; S, J1Ya) = exp{iaf}lYo) (36) 
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where a( is a constant dependent of f. Let 5 = y. Then, 
(Yols,s,l~o) 

= (Y ol( U: U, 1% ( U: U,) sjx ( U: U, ) W O )  

=(Yo1 exp(-ia,)( U&&)( ~,s&9 exp(i~y)l*o) 
= ~Yols~s,zlYo~. (37) 

Similarly, by letting f =  x, we obtain the second part of identity (33). 
Another observation which we need is that, for two distinct points k and j ,  

(Yols,s,ylYo) = 0. (38) 
It is due to the following simple facts. 

(i) The operator S,S,, is Hermitian when k and j are distinct. Therefore, its 
expectation in '4, is a real quantity. 

(ii) As the unique ground state of H, which is a real Hamiltonian, Y o  is a real 
linear combination of basis vectors. But, S,S/, is an imaginary operator. Therefore, 
its expectation in Yo must be an imaginary quantity. 

Combining (i) and (ii), we see that (38) holds. 
With equations (33) and (38), we find 

(Yolsq+sq-lYo) 

1 
=- 1 exp{iq.(k-j)} 
N n  k e n  jcn 

= 2~Yols;zsq~l~o~. (39) 

(40) 

In the last step, we have used the fact that Yo has quantum number S, =O. Equation 
(39) holds for any q. In particular, it holds for q = Q. Therefore, 

i.e. there is also ODLRO in Yo. 
(YO~SQ+SQ-IYO) = ~(YOIS+Q.SQ~IYO) 3 26Nn 
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